Prediction of residual energy intake in Fleckvieh cows using mid-infrared spectroscopy

S.-J. Burn¹⁺, S. Gruber¹⁺, B. Fuerst-Waltl¹, C. Egger-Danner², G. Terler³, A. Steinwidder³, J. Sölkner¹, W. Zollitsch¹

¹BOKU University, Department of Sustainable Agricultural Systems, Institute of Livestock Sciences, Gregor-Mendel-Str. 33, 1180 Vienna, Austria ²ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89, 1200 Vienna, Austria ³Agricultural Research and Education Centre Raumberg-Gumpenstein, Raumberg 38, 8952 Irdning-Donnersbachtal, Austria

⁺*These authors contributed equally to this work.*

Contact: sarah.burn@boku.ac.at

breed4green

Materials and Methods

- 19 Fleckvieh cows (68 lactations)
- research farm Raumberg-Gumpenstein
- 16 325 observations with daily MIR spectra and performance data (2014-2021)
 - energy intake, milk yield, milk solids, body weight, body condition score
- multiple linear regression model for REI in MJ NEL

MIR prediction models

- partial least squares regression
- 212 selected 1st derivative MIR spectra + test-day variables
- 10-fold random external validation by observations

Aim

- comparison of different models for residual energy intake (REI) to indicate feed efficiency
- developing mid-infrared (MIR) prediction equations for REI

Table 1. Linear regression models for REI with different predictor variables

Model	MilkE	FY	ΡΥ	MBW	ΔBW	BCS	ΔBCS	DIM _{I+q}	DIM _{L-5}	Par
REI-1	X			X		X		X		Х
REI-2	X			X	X	X	X	X		Х
REI-3		Х	X	X		X		X		Х
REI-4	X			X	X	X	X		X	Х

MilkE = milk energy; FY = milk fat yield; PY = milk protein yield; MBW = metabolic body weight; Δ BW = daily body weight change; BCS = body condition score; Δ BCS = daily body condition score change; DIM_{I+q} = days in milk (linear + quadratic); DIM_{L-5} = days in milk (fifth order Legendre polynomials); Par = parity

Results

Table 2. Performance of different REI prediction models in validation with different predictor variables

Table 3. Accuracies of REI prediction models (REI-1) in validation based on MIR and test-day variables fitted across different lactation stages

Figure 1. Average observed and predicted REI per day in milk for model REI-1

Conclusion

- moderate predictive ability of developed spectrometric prediction equations for REI
 model performance depends on REI model and lactation stage
 including test-day variables can improve predictive performance
 - potential to use MIR-predicted REI as indirect efficiency trait

NEXT STEPS: external validation

Figure 2. Relationship between observed and predicted REI values obtained in validation for model REI-1 from MIR and test-day variables

With support of the federal agency (BML) and dafne.at

Bundesministerium Land- und Forstwirtschaft, Regionen und Wasserwirtschaft

